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Using a generalized Landau theory involving orientational, layering, tilt, and biaxial order parameters we
analyze the smectic-A� and smectic-C� �Sm-A�–Sm-C�� transitions, showing that a combination of small
orientational order and large layering order leads to Sm-A�–Sm-C� transitions that are either continuous and
close to tricriticality or first order. The model predicts that in such systems the increase in birefringence upon
entry to the Sm-C� phase will be especially rapid. It also predicts that the change in layer spacing at the
Sm-A�–Sm-C� transition will be proportional to the orientational order. These are two hallmarks of
Sm-A�–Sm-C� transitions in de Vries materials. We analyze the electroclinic effect in the Sm-A� phase and
show that as a result of the zero-field Sm-A�–Sm-C� transition being either continuous and close to tricriticality
or first order �i.e., for systems with a combination of weak orientational order and strong layering order�, the
electroclinic response of the tilt will be unusually strong. Additionally, we investigate the associated electri-
cally induced change in birefringence and layer spacing, demonstrating de Vries behavior for each, i.e., an
unusually large increase in birefringence and an unusually small layer contraction. Both the induced changes in
birefringence and layer spacing are shown to scale quadratically with the induced tilt angle.
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I. INTRODUCTION

A. Background and motivation

In the last decade there has been significant experimental
and theoretical interest in the response of de Vries materials
to externally applied electric fields �1�. In the absence of
an applied field, de Vries materials exhibit a
smectic-A–smectic-C �Sm-A–Sm-C� �or, if chiral, a
Sm-A�–Sm-C�� transition with an unusually small change in
layer spacing and a significant increase in birefringence upon
entry to the Sm-C phase. The increase in birefringence is
associated with an increase in orientational order. Some de
Vries materials exhibit another unusual feature, namely, a
birefringence that varies nonmonotonically with temperature
�2,3�. Specifically, the birefringence decreases as the
Sm-A�–Sm-C� transition is approached from either the low-
or the high-temperature side. de Vries materials generally
seem to have unusually small orientational order and follow
the phase sequence isotropic Sm-A�–Sm-C�. In several de
Vries materials, the Sm-A�–Sm-C� transition seems to occur
close to a tricritical point �4–6�.

For chiral liquid crystals in general, the application of an
electric field to the Sm-A� phase induces a tilt of the average
molecular direction, relative to the layer normal, and hence
the optical axis. This phenomenon, known as the electro-
clinic effect, was first predicted using a symmetry-based ar-
gument �7� and was then observed experimentally �8�. The
electroclinic effect led to the development of electro-optic
devices using ferroelectric, i.e., chiral, liquid crystals. How-
ever, the quality of these devices has been limited by the
formation of chevron defects, which result from a significant
layer contraction associated with the electrically induced mo-
lecular tilt.

Ferroelectric de Vries materials have generated consider-
able excitement because in the Sm-A� phase they exhibit an
unusual electroclinic effect: a very large reorientation of the
optical axis with a very small associated layer contraction.
Additionally, there is a very large increase in the birefrin-
gence. Aside from being scientifically interesting, such an
electroclinic effect makes ferroelectric de Vries materials
strong candidates for liquid crystal devices that have large
electro-optical response without the associated problem of
chevron defects.

There are some details of the electro-optical response in
the Sm-A� phase of de Vries materials that merit further dis-
cussion. An important characterization of the electroclinic
effect is the response curve ��E�, where � is the tilt of the
optical axis and E is the strength of the applied electric field.
Different types of electroclinic response curves are shown
schematically in Fig. 1 and it can be seen that they are gen-
erally nonlinear �9,10�. As shown in Fig. 1�a�, for systems
with a continuous Sm-A�–Sm-C� transition ��E� is also con-
tinuous. As is typical for the electroclinic effect, the curva-
ture d2�

dE2 �0 so the susceptibility �= d�
dE is largest at E=0. The

zero-field susceptibility �0 diverges as the temperature T is
lowered toward the Sm-A�–Sm-C� transition temperature,
TAC. For systems with a first-order Sm-A�–Sm-C� transition
the situation is quite different. For temperatures above a criti-
cal temperature Tc the response is continuous but exhibits
what has been termed “superlinear growth.” As shown in
Fig. 1�b�, this corresponds to positive curvature at small
fields followed by negative curvature at large fields. It can
also be seen that � is largest at the field where the curvature
changes sign. As T is reduced toward Tc this value of �
diverges. For T�Tc the response becomes discontinuous, as
shown in Fig. 1�b�, and there is now a jump in the � at Ej.
The value of Ej decreases continuously to zero as T is low-
ered toward TAC. The value of �0 remains finite as T is low-
ered toward TAC.*ksaunder@calpoly.edu
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The response of the birefringence �n�E� in the Sm-A�

phase is also nonlinear and is qualitatively similar to the
response of the tilt, ��E� �9,10�. For systems with a continu-
ous Sm-A�–Sm-C� transition, �n�E� is also continuous,
while for systems with a first-order Sm-A�–Sm-C� transition,
�n�E� is continuous with superlinear growth for T�Tc and
is discontinuous for T�Tc, exhibiting a jump at Ej. Remark-
ably, when �n�E� is plotted parametrically against �2�E�, the
scaling is essentially linear, regardless of the nature �continu-
ous or first order� of the transition �9,10�. Equally remarkable
is the fact that for a given system, the slope of the linear
scaling varies very little with temperature. This means that
for any de Vries material the response of the birefringence is
well fitted by �n�E�=�n�0�+k�T��2�E�, where k�T� is a
material-dependent parameter that has only a very weak tem-
perature dependence. There is less published data on the re-
sponse of the layer spacing due to the application of an elec-
tric field, other than to show that it decreases with increasing
field and is unusually small �11�.

To date, there have been two theoretical approaches to
modeling the unusual electroclinic effect that is displayed by
de Vries materials. The first �6,12–14� is to use a Langevin
model �originally proposed by Fukuda in the context of
thresholdless antiferroelectricity �15�� in conjunction with
the assumption of a “hollow cone” distribution of the mo-
lecular directions. For the sake of brevity we refer to this
simply as the hollow cone Langevin model. For a hollow
cone distribution, the angle � between the long axes of the

molecules and the layer normal N̂ has a preferred value �A.
In the absence of a field the distribution of azimuthal angles,
i.e., the projections of the molecular axes onto the layering
plane, is uniform so that the average molecular direction, the

direction n̂, is parallel to N̂. One motivation for the use of
such a distribution is that it would explain the absence of
layer contraction at the Sm-C� transition because the already

tilted molecules need only to align azimuthally in order to

reorient n̂ away from N̂ by an angle �A. However, it has been
pointed out �16� that the hollow cone distribution would have
a large negative value of S4 �corresponding to the P4�cos ��
term in an expansion of the distribution in Legendre polyno-
mials�, whereas no Sm-A� materials have been found with
negative values of S4 �de Vries materials seem in general to
have very small values of S4�. The hollow cone Langevin
model yields predictions for the electrical response of the
director �via the response of the tilt and azimuthal angles�
and the birefringence, but not layer spacing, per se. Rather, it
is assumed that the response of the layer spacing will be
small due to the assumption of a hollow cone distribution.

The hollow cone Langevin model cannot describe sys-
tems with response curves of the type shown in Fig. 1�b�,
i.e., systems with first-order transitions. This has motivated
the use of a second type of model, namely, that initially
presented by Bahr and Heppke in their analysis of a field-
induced critical point near the Sm-A�–Sm-C� transition �17�.
While this model provides an accurate description of the re-
sponse curves, it does not make any predictions regarding
the electrical response of the birefringence or layer spacing.
Additionally, it does not make any connection to the de Vries
behavior of the zero-field Sm-A�–Sm-C� transition.

B. Summary of results

In this article we present and analyze a model that is a
chiral extension of the generalized Landau mean-field theory
that was presented in Refs. �18,19�. This model is based on
an expansion of the free-energy density in powers of orien-
tational, layering, tilt, and biaxial order parameters. There are
chiral couplings of these order parameters to an externally
applied field, the effects of which include the electroclinic
effect. Our analysis of this chiral model predicts all of the

(a) (b)
E

T(iv) = TAC < T(iii) < T(ii) < T(i)

FIG. 1. �Color online� A schematic representation of different types of electroclinic response curves. �a� ��E� for materials with
continuous Sm-A�–Sm-C� transitions. The curves �i�–�iv� have progressively smaller T with curve �iv� having T=TAC. The susceptibility
�= d�

dE is largest at E=0, and monotonically decreases as E is increased. The response increases as temperature, T, is lowered toward the
Sm-A�–Sm-C� transition temperature, TAC, with the zero-field susceptibility �0 diverging as T approaches TAC. �b� ��E� for materials with
first-order Sm-A�–Sm-C� transitions. Curve �i� shows the response for T�Tc, a critical temperature. In this case the response is continuous
but “superlinear,” corresponding to positive curvature at small fields followed by negative curvature at large fields. � is largest where the
curvature changes sign. As T is lowered toward Tc this value of � diverges. On curve �ii�, corresponding to T=Tc, � diverges at Ec. For
T�Tc the response becomes discontinuous, and � jumps at field Ej. The value of Ej decreases continuously to zero as T is lowered toward
TAC. Curves �iii� and �iv� correspond to TAC�T�Tc and T=TAC, respectively. The value of �0 remains finite as T is lowered toward TAC.
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main experimentally observed features of de Vries materials
outlined above: the de Vries behavior �near the zero-field
Sm-A�–Sm-C� transition� of layer spacing d and birefrin-
gence �n, as well as the nonmonotonicity of �n; proximity
of the transition to a tricritical point; the unusually strong
electrical response of tilt ��E� and birefringence �n�E� in the
Sm-A� phase, along with unusually small layer contraction;
the linear scaling of �n�E� vs �2�E�, regardless of the nature
of the zero-field Sm-A�–Sm-C� transition. Furthermore, all
of these features can be accounted for if the system possesses
unusually small orientational order and strong layering order,
a combination thought prevalent among de Vries materials.
These results do not rely on any particular assumptions about
the distribution of the molecular directions, other than that
the distribution corresponds to small orientational order. Ref-
erence �16� presents further details on possible molecular
distributions leading to small orientational order but non-
negative S4 value.

1. Zero-field Sm-A�–Sm-C� transition

Figure 2 shows the Sm-A�–Sm-C� phase boundary in
���2−M space, where ��� and M are the magnitudes of the
layering and orientational order parameters, respectively.
They will be defined more rigorously in Sec. II A. It has
been observed that the orientational order in de Vries sys-
tems has only a very weak temperature dependence. Along
with the fact that the nematic phase does not occur for all
known de Vries materials, this implies �18,19� that the tran-
sition to the Sm-C� phase is driven by an increase in the
layering as the temperature decreases. Thus, in the phase
diagram of Fig. 2�a�, varying the temperature corresponds to
a horizontal path. It is important to note that the negative
slope of the Sm-A�–Sm-C� phase boundary implies that the
smaller the value of M, the larger the value of ��� at which
the Sm-A�–Sm-C� transition occurs. This is consistent with
the observation �1,16� that de Vries smectics generally have
such unusually weak orientational order that their stabiliza-
tion requires strong layering order, perhaps via microsegre-
gation.

The zero-field model predicts that a Sm-A�–Sm-C� tric-
ritical point results due to a coupling between biaxiality and
tilt. The effect of biaxiality is stronger in systems with small
M and large ��� so that a tricritical point and associated
neighboring first-order transition can be accessed by systems
with sufficiently small orientational order, M 	MTC. Here
MTC is the value of the orientational order at which the sys-
tem exhibits a tricritical Sm-A�–Sm-C� transition. This is
shown in the phase diagram of Fig. 2.

As usual, for systems with continuous Sm-A�–Sm-C�

transitions, the growth of � upon entry to the Sm-C� phase
scales like �
 �t��, where t= T

TAC
−1 is the reduced tempera-

ture and TAC is the Sm-A�–Sm-C� transition temperature
�20�. Away from the tricritical point the scaling is XY like, so
�=0.5, and at the tricritical point �=0.25, implying a more
rapid growth of � at tricriticality, as shown in Fig. 2�b�. In
the Sm-C� phase, for M �MTC, there is a crossover in the
scaling from XY like to tricritical at some reduced tempera-
ture t��M�. As M is lowered toward MTC this crossover t�

shrinks to zero. For M0	MTC the transition Sm-A� to Sm-C�

is first order and there is a discontinuous jump in � at the
transition, also shown in Fig. 2�b�.

The behavior of the birefringence near the zero-field
Sm-A�–Sm-C� transition is essentially the same as that for
the Sm-A–Sm-C transition. This behavior is best described in
terms of the fractional change in birefringence �n�

�n−�nAC

�nAC
,

where �nAC is the birefringence in the Sm-A� phase right at
the Sm-A�–Sm-C� boundary. As discussed in Ref. �18� we
find that upon entry to the Sm-C� phase, for any of the three
types of transitions �XY like, tricritical, and first order�, �n of

(a)

(b)

FIG. 2. �a� The phase diagram in ���2-M space near the tricriti-
cal point ���TC�2 ,MTC�. The quantity M is a measure of how much
orientational order the system possesses and for de Vries materials
is effectively athermal. The quantity ��� is a measure of the strength
of the layering. It is a monotonically decreasing function of tem-
perature so that for a given material, decreasing the temperature
corresponds to moving horizontally from left to right. The solid line
represents the continuous Sm-A�–Sm-C� boundary while the dashed
line represents the first-order Sm-A�–Sm-C� boundary. These two
boundaries meet at the tricritical point ���TC�2 ,MTC�. The dotted
line indicates the region in which the behavior crosses over from
XY like to tricritical. The region in which the behavior is XY like
shrinks to zero as the tricritical point is approached. At the tricritical
point the slopes of the first-order and continuous Sm-A�–Sm-C�

boundaries are equal but the curvatures are not. Also shown, as
double ended arrows, are the three distinct classes of transitions: XY
like, tricritical, and first order. �b� The tilt angle � as a function of
reduced temperature t��1− T

TAC
� near the Sm-A�–Sm-C� transition

temperature TAC, i.e., for �t��1. Upon entry to the Sm-C� phase the
growth of the tilt angle scales like �t�1/2 for a mean-field XY-like
transition. For a tricritical transition it scales like �t�1/4 and is thus
more rapid. For a first-order transition there is a jump in the tilt
angle upon entry to the Sm-C� phase.
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a de Vries type material will grow according to �n
�2.
While the dependence of �n on � is the same for all three
types of transitions, its dependence on temperature is not the
same because, as shown in the Fig. 2�b�, � scales differently
with temperature for each type of transition. For an XY-like
transition the growth of �n will be linear, 
�t�, while for a
transition at tricriticality it scales like �t�1/2 and is thus more
rapid. For a first-order transition there will be a jump in the
tilt angle and, therefore, an associated jump in �n, although
near tricriticality, where the transition is only weakly first
order, the jump will be small. Thus, the rapid growth of
birefringence observed in de Vries materials can be attributed
to the proximity of the system’s Sm-A�–Sm-C� transition to a
tricritical point, which as discussed above, can in turn be
attributed to unusually small orientational order. Addition-
ally, we predict the possibility of a weakly temperature-
dependent birefringence that decreases as the zero-field
Sm-A�–Sm-C� transition is approached from the Sm-A�

phase, which as discussed above, is an unusual feature that
has been observed experimentally �2,3�.

Similarly, the behavior of the layer spacing d near the
zero-field Sm-A�–Sm-C� transition is essentially the same as
that for the Sm-A–Sm-C transition, and is best described in
terms of the layer contraction �d��dAC−dC� /dAC, where dAC
and dC are the layer spacing in the Sm-A� phase �right at the
Sm-A�–Sm-C� boundary� and in the Sm-C� phase, respec-
tively. We find that for any of the three possible types of
transitions, �d
M0�2. Thus, for unusually small orienta-
tional order M0, the layer contraction is unusually small, and
therefore de Vries like.

2. Electroclinic effect in the Sm-A� phase

With the application of an electric field of strength E, we
show that our generalized Landau model predicts the follow-
ing relationship between the induced tilt, �, and E:

E = �e�t,M,d�� + �e�M,d��3 + 
e�M,d��5. �1�

This relationship is completely analogous to that presented
by Bahr-Heppke in the context of a field-induced critical
point near the Sm-A�–Sm-C� transition �17�. However, our
derivation of Eq. �1� from the more basic level of a general-
ized Landau theory �in terms of layering and orientational
order parameters� allows us to relate the coefficients
�E�t ,M ,d�, �E�M ,d�, and 
E�M ,d� to the orientational or-
der, M, and the layer spacing, d, in the system. This allows
us to do two important things. First, we can determine the
nature of the response ��E� �i.e., continuous with decreasing
slope, superlinear or discontinuous� based on the degree of
orientational order M in the system. Second, using Eq. �1�
along with the rest of the generalized free energy, we can
determine the electrical response of the birefringence �which
is proportional to the M� and the layer spacing d.

The nature of the response depends crucially on the sign
of �e�M ,d�. We find that �e�M ,d�
 �M −MTC�. Thus, for
sufficiently large orientational order M �MTC, i.e., for sys-
tems with a continuous Sm-A�–Sm-C� transition, �e�0 and
the response is continuous with susceptibility decreasing as
E is increased. The response at the continuous Sm-A�–Sm-C�

transition for small fields scales like �
E1/�. Away from tri-

criticality �M �MTC� �=3 while at tricriticality �M =MTC��
=5 and the response is significantly stronger. For sufficiently
small orientational order M 	MTC, i.e., for systems with a
first-order Sm-A�–Sm-C� transition, �e�0. In this case for
sufficiently large temperature T�Tc the response is superlin-
ear, while for T�Tc the response curve ��E� becomes S
shaped and there is a jump in � as the field is increased
through Ej. At T=Tc the susceptibility diverges at Ec, and, as
shown by Bahr and Heppke, the corresponding point
�Tc ,Ec ,��Tc ,Ec�� is a critical point. Thus, like the rapid
growth of the zero-field birefringence at the Sm-A�–Sm-C�

transition, the strong electrical response of the tilt in de Vries
materials can be attributed to the proximity of the system’s
Sm-A�–Sm-C� transition to a tricritical point. This can in
turn be attributed to the unusually small orientational order
of de Vries materials.

In describing the change in birefringence due to an ap-
plied field, it is useful to define the fractional change of the
birefringence due to the applied electric field, �n�E�
� �n�E�−�n�0�

�n�0� , where �n�E� is the birefringence in the pres-
ence of a field of magnitude E. We show that regardless of
the nature of the transition �and hence the response� �n�E�
scales linearly with �2�E�, i.e.,

�n�E� = ��T��2�E� . �2�

This scaling, shown in Fig. 3�a�, is consistent with experi-
ment �9,10�. The dimensionless constant ��T�

 ���T��2 /d�T�2 depends on temperature via its dependence
on layering strength ���T�� and layer spacing d�T�. Since
both d

dT ���T�� and d
dTd�T� have the same sign �i.e., negative�,

it is possible that ��T� is only weakly dependent on tempera-
ture, which would be consistent with experiment. The rela-
tionship given in Eq. �2� means that an unusually strong, e.g.,
discontinuous, electrical response of the tilt will imply an
unusually strong response, e.g., discontinuous, of the bire-

(a) (b)

FIG. 3. �a� A plot of the fractional change of the birefringence
due to applied electric field, �n�E�� �n�E�−�n�0�

�n�0� versus the square of
the induced tilt, �2�E�. For any type of transition �and hence any
type of response of ��E�� we find that the scaling of �n�E� with
�2�E� is linear. The model predicts the possibility of a weakly
temperature-dependent slope ��T�. �b� A plot of the layer contrac-
tion due to applied electric field, �d�E�� d�E�−d�0�

d�0� versus the square
of the induced tilt, �2�E�. For any type of transition �and hence any
type of response of ��E�� we find that the scaling of �d�E� with
�2�E� is linear. The slope of the scaling is proportional to ME=0, the
value of the zero-field orientational order, which for de Vries mate-
rials is unusually small. Two plots are shown, one for a system with
small orientational order ME=0�1, for which the contraction will
be small, and one for a system with strong orientational order
ME=0�1, for which the contraction will be sizable.
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fringence, which again is consistent with experiment.
Similarly, the layer spacing d�E� is affected by the field,

and the layer contraction �d�E�� d�E�−d�0�
d�0� also scales linearly

with �2�E� regardless of the nature of the transition �and
hence the response�, i.e.,

�d�E� 
 ME=0�2�E� , �3�

where ME=0 is the value of the zero-field orientational order,
which for de Vries materials is unusually small. Thus, for de
Vries materials the contraction of the layers associated with
the electroclinic effect will also be unusually small. As with
the birefringence, the shape of response curve d�E� will be
nonlinear and discontinuous if ��E� is. However, regardless
of the shape, if ME=0 is small, the layer contraction will be
too. This is summarized in Fig. 3�b�. As discussed above,
there is less published data on the response of the layer spac-
ing other than to show that it is small. Further experimental
investigation of the response could be in interesting, in order
to see if it is consistent with Eq. �3� above.

C. Outline

The remainder of this article is organized as follows. In
Sec. II we review the nonchiral generalized Landau theory.
This is done with a view to using it as the basis of our chiral
model and we focus in particular on the parts of model that
are important for the analysis of the electroclinic effect. Ad-
ditionally, we review the results for the nonchiral zero-field
phase diagram, as it will be argued later that the phase dia-
gram for a chiral system is essentially the same. In Sec. III
we generalize the model to reflect the presence of chirality
and an external field. The general approach to doing so is to
add the relevant chiral terms and field-dependent terms. To
strike a balance between making the model realistic and
making it manageable, we are selective in what we add to
reflect the presence of chirality and a field. The justification
behind our selection is discussed in Sec. III. In Sec. IV we
analyze the response of the tilt to a field applied to the Sm-A�

phase. In Sec. V we analyze the response of the birefringence
and layer spacing to a field applied to the Sm-A� phase. We
provide a brief recap of our results in Sec. VI. The Appendix
includes details of the analysis from Sec. V.

II. MODEL AND RESULTS FOR A NONCHIRAL SYSTEM

In constructing the free-energy density for a chiral smec-
tic we follow the usual strategy of starting with a nonchiral
free-energy density and then adding the terms that reflect the
breaking of the chiral symmetry and the presence of a field.
In this section we discuss the nonchiral model and results.

A. Free-energy density for a nonchiral system

The nonchiral free-energy density includes orientational,
tilt �azimuthal�, biaxial, and layering order parameters. The
complex layering order parameter � is defined via the den-
sity �=�0+Re��eiq·r� with �0 constant and q the layering
wave vector, the arbitrary direction of which is taken to be z.
The remaining order parameters are embodied in the usual

second-rank tensor orientational order parameter Q, which is
most conveniently expressed as

Qij = M��− cos��� + 	3 sin����e1ie1j + �− cos���

− 	3 sin����e2ie2j + 2 cos���e3ie3j
 , �4�

where ê3=c+	1−c2ẑ is the average direction of the mol-
ecules’ long axes, �i.e., the director�. Here, in either the Sm-A
or Sm-C phase, ẑ is normal to the plane of the layers. The
projection, c, of the director onto the layers is the order pa-
rameter for the Sm-C phase. The other two principal axes of
Q are given by ê1= ẑ� ĉ and ê2=	1−c2ĉ−cẑ. These unit
eigenvectors are shown in Fig. 4. The amount of orienta-
tional order is given by M 
	Tr�Q2�, which is proportional
to the birefringence. The degree of biaxiality is described by
the parameter �. The Sm-A phase is untilted �c=0� and
uniaxial ��=0�, while the Sm-C phase is tilted �c�0� and
biaxial ���0�. From Fig. 4 it can be seen that the angle �,
by which the optical axis tilts, can be related to c via c
=sin���.

The nonchiral generalized free energy was presented pre-
viously �18� as a sum, f = fQ+ f�+ fQ�, of orientational �fQ�,
layering �f��, and coupling �fQ�� terms. The orientational
term consists of terms 
Tr�Qn�, with integer n�1. The lay-
ering term consists of terms 
q2n���2m with integers n�0
and m�0. The coupling term fQ� consists of real scalar
combinations of q, Q, and �, e.g., qiqjQij���2. To make the
analysis tractable, the coefficients of these coupling terms
were �and will be� assumed to be small. Minimization with
respect to the biaxiality � yielded the nonchiral free-energy
density f � fM + f�+ fM�+ fc. The pieces fM and f� only in-
volve the orientational and layering order parameter M and
�, respectively, and are given by

fM =
1

2
rnM2 −

1

3
wM3 +

1

4
unM4, �5�

and

FIG. 4. The unit eigenvectors ê1, ê2, and ê3 of the orientational
order tensor Q. These are shown as solid arrows, with ê1 pointing
into the page. Also shown, as a dotted arrow, is the layering direc-

tion N̂, which is normal to the plane of the layers. We choose this as
our ẑ direction. The eigenvector ê3 corresponds to the average di-
rection of the molecules’ long axes. The order parameter, c, for the
C phase is the projection of ê3 onto the plane of the layers, and is
shown as a dashed arrow. The angle �, by which the optical axis
tilts, is also shown. This is the arrangement that corresponds to the
lowest energy state if the applied electric field points into the page.
Taking this direction to be ŷ, i.e., E=Eŷ implies that c points in the
x̂ direction.
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f� =
1

2
rs���2 +

1

4
us���4 +

1

2
K�q2 − q0

2�2���2. �6�

The coefficients w, un, us, and K are positive. As usual in
Landau theory, the parameters rn and rs are monotonically
increasing functions of temperature and control the “bare”
orientational and layering order parameters, M0 and �0, re-
spectively. By “bare” we mean the values the order param-
eters would take on in the absence of the coupling term fQ�

and an externally applied field. Similarly, the constant q0
is the bare value of the layering wave vector. From Eqs. �5�
and �6� above, we immediately find M0�rn�= �w
+	w2−4unrn� /2un and ��0�=	−rs /us. As discussed in Sec. I,
de Vries behavior occurs in materials where the layering and
orientational order parameters are the primary and secondary
order parameters, respectively. This would imply a virtually
athermal rn �and thus, an athermal M0� so that for a given
material M0 can be thought of as a fixed quantity. This means
that the temperature variation in orientational order M is ef-
fectively due to its coupling to the temperature dependent
layering, i.e., via fM� and fc. The term fM� is given by

fM� = q2���2M�− a�q2� + b���2 + 2gM + hq2M� , �7�

where a�q2�=a0+a1�q2−q0
2�. The coefficients a0, a1, b, g,

and h are positive and, as discussed above, are treated per-
turbatively throughout �21�. For notational simplicity, we
suppress the explicit q dependence of a, i.e., we use a
=a�q2�. The coupling term fc involves the tilt �azimuthal�
order parameter c and is given by

fc =
1

2
rcc

2 +
1

4
ucc

4 +
1

6
vcc

6. �8�

The coefficients rc, uc, and vc are given by rc=3aq2���2M�,
uc=9�hq4���2M2, and vc= 81

4 sq6���2M3, with s another cou-
pling coefficient that is treated perturbatively throughout.
The parameter �=1− b���2+�g+2hq2�M

a controls the zero-field
transition. The proximity of the zero-field transition to tric-
riticality is measured by the tricritical proximity parameter �
which will be discussed below.

B. Zero-field Sm-A–Sm-C transitions

1. Continuous Sm-A–Sm-C transition

At the continuous Sm-A–Sm-C transition the dimension-
less parameter � and thus rc changes sign. For materials, such
as de Vries smectics, with orientational order M that is
weakly temperature dependent, this transition occurs due to
the layering order ��� increasing as temperature decreases.
Using the above expression for �, the continuous transition
temperature T0 is defined via ��0�T0��2= �a0− �g
+2hq0

2�M0� /b. Figure 5 shows the continuous Sm-A–Sm-C
boundary as a straight line in ���2−M space. At this point we
make a notational distinction. In referring to the Sm-A–Sm-C
transition temperature generally �i.e., without distinguishing
between continuous or first order� we use TAC. When refer-
ring specifically to either a continuous or a first-order transi-
tion we use T0 and T1st, respectively. It is useful to work with
a reduced temperature t� T

T0
−1 which, near the continuous

transition, can be related to � via �=1−
��0�T��2

��0�T0��2 � pt. Here we
have Taylor expanded ��0�T�� near T=T0. The dimensionless

parameter p=−�
T0

��0�T0��2
d��0�T��2

dT �T=T0
�0 can be thought of as a

dimensionless measure of how rapidly the layering order
changes with temperature.

2. Sm-A–Sm-C tricritical point

The dimensionless tricritical proximity parameter � incor-
porates the renormalization of the c4 term due to the coupling
between biaxiality � and tilt c �in the absence of such a
coupling �=1� and depends on the amount of orientational
and layering order. It is given by

��T� = 1 −
g

2hq2� wM�T�
gq2���T�2�

− 1�−1

, �9�

where the temperature dependence of � is a consequence of
the temperature dependence of both � and M. For de Vries
materials, in which the orientational order M varies very
little with temperature in the Sm-A phase, the temperature
dependence of � in the Sm-A phase is due primarily to the
temperature variation in the layering order ���. Figure 5
shows the locus of �=0 in ���2−M space. The nature of the
transition is determined by the sign of �AC���TAC�, the
value of � at the zero-field Sm-A–Sm-C transition. For
�AC�0 �for small and large values of ��� and M, respec-
tively� the transition is continuous while for �AC�0 �for
large and small values of ��� and M, respectively� the tran-
sition is first order. When �AC=0 the quartic term vanishes
and the transition is tricritical. As shown in Fig. 5 the asso-

FIG. 5. The t=0 �solid�, �=0 �dashed-dotted�, t= t�
−�M
−MTC�2 �dotted�, and t= t1st
 �MTC−M�2 �dashed� loci in ���2-M
space. The corresponding phase diagram is shown in Fig. 2�a�. The
continuous transition occurs for ��0 and at t=0. Thus, the tricriti-
cal point ���TC�2 ,MTC� is located at the intersection of the t=0 and
�=0 loci. The first-order Sm-A�–Sm-C� transition occurs for �
�0 and at t�0. The horizontal separation between the first-order
boundary and the extrapolated continuous boundary scales like
�MTC−M�2. Similarly, the separation between the continuous
boundary and the tricritical crossover region at t� scales like �M
−MTC�2. The negative slope of the Sm-A�–Sm-C� phase boundary
implies that the smaller the value of M, the larger the value of ��� at
which the Sm-A�–Sm-C� transition occurs. This is consistent with
the observation that de Vries smectics generally have such unusu-
ally weak orientational order that their stabilization requires strong
layering order, perhaps via microsegregation.
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ciated tricritical point ���TC�2 ,MTC� is located where the con-
tinuous Sm-A–Sm-C boundary meets the locus of �=0. For
de Vries materials with a virtually athermal M the sign of
�AC is determined by the size of the system’s orientational
order. For a transition close to tricriticality, �AC is most con-
veniently expressed as

�AC � m�M − MTC

MTC
� , �10�

where m=1+
2hq0

2

g is a dimensionless constant. To lowest or-

der in the coupling parameters, MTC=
ma0g2

2hbw . The correspond-
ing value of layering order at the tricritical point is ��TC�
=	a /b. In previous models �22� of the Sm-A–Sm-C transi-
tion the parameter analogous to � has been assumed to be
independent of temperature. In our model, as discussed
above, � will vary with temperature via the temperature de-
pendence of ���T��. For the time being we will use a constant
� approximation, ��T���AC, valid near the Sm-A–Sm-C
transition. In Sec. IV C we discuss in further detail the tem-
perature dependence of � and some of the related conse-
quences for the electroclinic response.

A commonly used �22� measure of how close the continu-
ous Sm-A–Sm-C �or Sm-A�–Sm-C�� transition is to tricriti-
cality is the magnitude of the reduced temperature, �t��, when
�rc�=uc

2 /vc. Using this condition, it is straightforward to show
that

t� = − �1�M − MTC

MTC
�2

, �11�

where the dimensionless constant �1= 4h2m2

3pas . In the Sm-C
phase, well within the corresponding temperature window
T��T�T0, where T�=T0�1− �t���, the quartic term 
c4 is
important, and the behavior is XY like. Sufficiently far out-
side this window, i.e., T�T�, it can be neglected, and the
behavior of the system is tricritical. Figure 5 shows the cor-
responding crossover region in ���2-M space, in which the
system’s behavior goes from being XY to tricritical. The re-
duced temperature t� can be obtained �22� from measure-
ments of the specific heat at the continuous Sm-A–Sm-C �or
Sm-A�–Sm-C�� transition. Work has been done to relate the
size of the reduced temperature window �t�� to system param-
eters, e.g., the width of the Sm-A phase �23�. However, to the
best of our knowledge, no one has yet investigated a possible
relationship between the size of the reduced temperature
window and the size of the orientational order M. The above
expression for t� provides a prediction for such a relationship
�24�.

3. First-order Sm-A–Sm-C transition

It was shown �18� that when the tricritical proximity pa-
rameter �AC�0, i.e., M �MTC, a first-order Sm-A–Sm-C
transition occurs at a value of t given by t1st=

3
16 �t���0. As

discussed in Ref. �18� the size of the latent heat at the first-
order Sm-A–Sm-C transition is proportional to �AC and thus,
calorimetric studies can measure the proximity of the first-
order transition to the tricritical point. It is important to keep
in mind that the first-order Sm-A–Sm-C will occur at t�0

and thus T1st�T0. Correspondingly, the value of layering
order ��� at the first-order Sm-A–Sm-C boundary is smaller
than would be necessary for a continuous Sm-A–Sm-C tran-
sition. Figure 5 shows an extrapolation of the continuous
Sm-A–Sm-C boundary in ���2-M space for M �MTC. The
difference between the layering at the extrapolated boundary
and the first-order Sm-A–Sm-C boundary is proportional to
�M −MTC�2.

C. Roles of orientational order and layering order in de Vries
behavior and the nature of the Sm-A–Sm-C transition

As shown in Ref. �18� de Vries behavior, i.e., an unusu-
ally small change in the layer spacing at the Sm-A–Sm-C
transition, can be explained by unusually small orientational
order and coupling parameters. The de Vries behavior, i.e.,
unusually rapid change, of the birefringence at the
Sm-A–Sm-C transition can be explained by proximity of the
transition to a tricritical point. It has been experimentally
observed �4–6� that several materials exhibiting de Vries be-
havior also have a Sm-A–Sm-C transition that is close to a
tricritical point. Our model implies that de Vries behavior
and proximity of the Sm-A–Sm-C transition to tricriticality
can be connected by unusually small orientational order. In-
deed, it has been observed that de Vries materials do have
unusually small orientational order. Consequently it has been
argued �1,16� that stabilization of materials with such small
orientational order must be provided by unusually strong lay-
ering order, perhaps via microsegregation. The phase dia-
gram in ���2-M space, shown in Fig. 2, is consistent with
such an argument; the negative slopes of both the continuous
and first-order phase boundaries mean that systems with
smaller orientational order require larger layering order to
make the transition from the Sm-A phase to the Sm-C phase.

To the best of our knowledge, no direct measurement of
the layering order in de Vries materials has been published.
We believe such measurements would be valuable in under-
standing the role that layering order plays in driving the
Sm-A–Sm-C �or Sm-A�–Sm-C�� transition, as well as the
nature of the transition �i.e., continuous, tricritical, or first
order� and how de Vries like the system is. While direct
measurements of the layering have not been reported, there is
published data �25� on the width of the Sm-A� phase in a
homologous series of hexyl lactates �nHL� exhibiting
Sm-A�–Sm-C� transitions that range from conventional to de
Vries like. It is found that the temperature width of the
Sm-A� phase window increases as the system becomes more
de Vries like. Making the conventional assumption that the
layering order at the Sm-A�–Sm-C� transition is a monotoni-
cally increasing function of the temperature width of the
Sm-A� phase, this data is consistent with our model. How-
ever, one must be careful in making this assumption for sys-
tems �e.g., de Vries materials� that have first-order isotropic
�Iso�–Sm-A �or Sm-A�� transitions where the layering does
not necessarily grow continuously from zero. For example, it
could be possible that the layering order at the Iso–Sm-A �or
Sm-A�� transition is larger in systems with smaller orienta-
tional order. Thus, the layering at the Iso–Sm-A �or Sm-A��
transition may already be large enough so that it is not nec-
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essary to have a wider temperature window for the Sm-A �or
Sm-A�� phase �26�. This is another reason that a systematic
experimental investigation of the layering and orientational
order in these systems would be valuable.

III. INCORPORATING THE EFFECTS OF CHIRALITY
AND EXTERNAL FIELDS TO THE

FREE-ENERGY DENSITY

Having set up the nonchiral zero-field free energy we next
add terms to reflect the presence of chirality and an exter-
nally applied field. The most important such term is the one
which models the electroclinic interaction of the molecules
with the applied electric field E. To lowest order in the ori-
entational and layering order parameters it is

fEC = e�ijkqiql���2EjQlk � eq2M���2ẑ · �E � c� , �12�

where �ijk is the Levi-Cevita symbol and the Einstein sum-
mation convention is implied. In coupling the electric field
directly to the tilt c, instead of via the electrostatic polariza-
tion P, we are making the standard assumption that P
 ẑ
�c �27�. The coefficient e depends on the strength of the
electrostatic coupling between the field and the molecules.
This in turn depends on amount of chirality in the system and
for a racemic mixture e=0. Here we take e�0; switching the
handedness, e.g., left to right, of the molecules simply
switches the sign of e. In making the approximation in Eq.
�12� above, we include only the lowest-order contribution of
tilt c from the orientational order tensor Q and we neglect
the biaxial part of Q. It can be shown that close to the tric-
ritical point the coupling between the field and biaxiality is
negligible.

In order to make the model manageable, we also omit
other contributions, each of which lead only to secondary
less important effects. The first of these is the nonchiral cou-
pling of the system to the electric field which would contrib-
ute terms such as EiEjQij. All such terms scale like E2 and in
the limit of small field can be shown to be much smaller than
the electroclinic term in Eq. �12� above, which scales linearly
with E.

We also assume a spatially uniform tilt c and thus ignore
a second group of contributions involving spatial variations
in c, including manifestly chiral terms that depend on the
sign of ��c. We have analyzed the difference that such
terms make to our model. One zero-field effect of these
terms is to shift the location of the Sm-A�–Sm-C� phase
boundary, by renormalizing the coefficients in the free-
energy expression, Eq. �8�, for fc. In particular, increasing
the chirality of the system lowers the quadratic coefficient,
rc, the effect of which is to increase the Sm-A�–Sm-C� tran-
sition temperature. Increasing the chirality also lowers the
value of the quartic coefficient uc, thus driving a continuous
transition toward tricriticality or a first-order transition away
from tricriticality. The behavior of the layer spacing and bi-
refringence are also somewhat affected via the renormaliza-
tion of these coefficients. However, in the limit �which we
assume throughout� of small orientational order and small
couplings between layering and orientational order param-
eters, the renormalization of these coefficients is negligible.

Thus, the zero-field behavior of the chiral system should es-
sentially be the same as described for the nonchiral system.

The absence of terms involving spatial variations in c also
precludes the possibility of a superstructure involving a spa-
tial modulation of c, which in the zero-field Sm-C� phase
would be helical. In the past �17� the assumption of a spa-
tially uniform tilt has been justified by consideration of elec-
tric field strength above that necessary to unwind a helical
superstructure. However, it is not obvious that a helical su-
perstructure would form when the tilt is electrically induced
�as opposed to spontaneously developing at the zero-field
Sm-A�–Sm-C� transition.� For example, it has been shown
�28� that in a two-dimensional Sm-A� film, the electroclinic
effect can lead to a spatially uniform tilt at small and large
fields and to a modulated tilt for fields of intermediate
strength. To the best of our knowledge the situation for three-
dimensional Sm-A� systems has yet to be analyzed, although
we plan to do so in the near future. It should be pointed out
that one proposed explanation �29� for the strong electro-
clinic effect in de Vries materials is that the Sm-A� phase is
actually a Sm-C� phase that is made up of an ordered array
of disclination lines and walls, and thus assumes a strong
spatial modulation of the tilt in the Sm-A� phase. We do not
explore that possibility here.

In summary, because we are interested primarily in the
electroclinic effect and do not wish to overburden the model
with less important secondary effects, the only extra term we
add to our nonchiral model is that given in Eq. �12�.

IV. RESPONSE OF TILT

In this section we explore the response of the tilt order
parameter c to an externally applied electric field E. Of par-
ticular interest is the response near the tricritical point shown
in Fig. 2. As shown in Fig. 4 we take the field to point in the
ŷ direction so that the free energy is minimized by a tilt in
the x̂ direction, i.e., c=cx̂ and fEC=−bq2M���2Ec. The mag-
nitude c of the tilt induced by the applied field can be deter-
mined using the tilt portion of the free energy, fc+ fEC. Mini-
mizing this free energy with respect to the tilt c one obtains
the following relationship between c and E:

E = �ec + �ec
3 + 
ec

5, �13�

where the electroclinic coefficients �e, �e, and 
e are given
by

�e =
3apt

e
, �14�

�e =
9�hq2M

e
, �15�


e =
81sq4M2

4e
, �16�

where the reader is reminded that the tricritical parameter �
generally depends on temperature via its dependence on ori-
entational �M� and layering order �����, given in Eq. �9�. As
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discussed in Sec. II B 2 the orientational order of the Sm-A�

phase in de Vries materials varies very little with temperature
so the temperature dependence of � in the Sm-A� phase is
due primarily to the temperature variation in the layering
order ���. The relationship �Eq. �13�� between E and c is
analogous �30� to that derived by Bahr and Heppke in their
analysis of a field-induced critical point near the
Sm-A�–Sm-C� transition �17�. There are, however, a couple
of distinctions that should be pointed out. The first is moti-
vation. In Ref. �17� the primary motivation was to establish
the existence of and to analyze a line of first-order
Sm-A�–Sm-C� transitions in the temperature-field plane that
terminates at a critical point. Our motivation is to model and
explain the unusually large electroclinic response of de Vries
materials. It will be shown that this can be done by analyzing
Eq. �13� in a similar manner to Ref. �17�.

A second related distinction is that, as a result of starting
with a generalized Landau theory in terms of orientational
and layering order parameters, we can relate our coefficients
�e, �e, and 
e to the strengths of orientational order �and
hence birefringence� and layering order, as well as the layer
spacing �via q� in the system. Of particular interest is the
origin of a negative quartic coefficient ��e�0 in Eq. �13�
above�, which is necessary for a field-induced first-order
Sm-A�–Sm-C� transition. In Ref. �17�, this was assumed
�justifiably� on the basis of the existence of a zero-field first-
order Sm-A�–Sm-C� transition. Here, a negative quartic co-
efficient can be explained as resulting from sufficiently weak
orientational order, which, as discussed in Sec. II C necessi-
tates strong layering order, in order to stabilize the system.
Thus, our generalized Landau theory shows that an unusually
strong electrical response of the tilt can be explained as re-
sulting from a combination of weak orientational order and
strong layering order, which makes the quartic coefficient �e
either positive and small �corresponding to a continuous
zero-field Sm-A�–Sm-C� transition that is near a tricritical
point� or negative �corresponding to a first-order zero-field
Sm-A�–Sm-C� transition�. A related distinction between this
analysis and that of Bahr and Heppke is that our quartic
coefficient, �e, depends on temperature via the temperature
dependence of �. We will next analyze the electroclinic re-
sponse implied by Eq. �13�.

A. Electroclinic response near the continuous zero-field
Sm-A�–Sm-C� transition

We begin our analysis by approximating the tricritical
proximity parameter � as being temperature independent,
i.e., ��T���AC, which is valid sufficiently close to the
Sm-A�–Sm-C� transition. The effect of �’s temperature de-
pendence will be discussed in Sec. IV C. For �AC�0, corre-
sponding to a continuous zero-field Sm-A�–Sm-C� transition,
�e�0. For such systems, the response of the tilt c to an
applied field E is continuous. Additionally, as shown in Fig.
6, the susceptibility �= �c

�E gets smaller with increasing field.
Its largest value, at E=0, is �0�T�=�e�T�−1, which diverges
as the system approaches the continuous zero-field
Sm-A�–Sm-C� transition at �e�T0�=0, a standard result for
continuous transitions. The response at the Sm-A�–Sm-C�

transition for small fields is c
E1/�, with �=3 away from
tricriticality and �=5 at the tricritical point.

It is interesting to consider how the response �c� at fixed
reduced temperature �t�0� and field �E�0� is affected by
lowering �AC toward zero, i.e., driving the continuous tran-
sition to tricriticality. It is straightforward to show that

�c

��AC
= −

9hq2Mc3�

e
� 0, �17�

which, as expected, shows that the response, at fixed E and t,
should be larger for systems with smaller �AC, i.e., systems
in which the orientational order is small �M �MTC�. This is
shown graphically in Fig. 6�b� and is reminiscent of an ex-
perimentally obtained comparison �1,31� of electroclinic re-
sponses for a homologous series of hexyl lactates �nHL�,
with each response being measured at the same reduced tem-
perature. The response is observed to be larger for small n
values. The compounds have zero-field continuous
Sm-A�–Sm-C� transitions that range from conventional to de
Vries like �25�. We speculate that if one were to measure the
proximity of each compound’s transition to a tricritical point,
one would find that 9HL’s and 12HL’s transitions are closest
and furthest respectively, i.e., 0��AC9HL

��AC12HL
.

B. Electroclinic response near the first-order zero-field
Sm-A�–Sm-C� transition

Next we consider the response when the tricritical prox-
imity parameter �AC�0 �and thus �e�0� corresponding to a
first-order zero-field Sm-A�–Sm-C� transition. As shown in
Fig. 7, for large reduced temperatures t the response is con-
tinuous and will show a positive curvature � d2c

dE2 �0� at small

fields followed by a negative curvature � d2c
dE2 �0� at large

fields. The positive curvature has been referred to in the lit-
erature �e.g., in Ref. �12�� as “superlinear growth.” For suf-
ficiently small temperatures the response curve is S shaped
�i.e., has a portion with negative slope� and there is a jump in
the tilt as the electric field is increased from zero. Thus, an
unusually strong discontinuous electroclinic effect will be
exhibited by systems with sufficiently small orientational or-
der M �MTC.

We define tc as the value of reduced temperature below
which the response curve, c�E�, exhibits a negative slope,
and hence a discontinuity in the response. As shown in Fig.
7, at t= tc, the curve has divergent slope and curvature at Ec
and cc. Thus, the values tc, Ec, and cc are specified by
� dE

dc �tc,cc
= � d2E

dc2 �tc,cc
=0 and Ec=E�tc ,cc�. At the level of the

mean-field theory presented here and elsewhere �17�, the as-
sociated critical point �tc ,Ec ,cc� is analogous to the liquid-
vapor critical point. However, it has been pointed out �32�
that when fluctuations are included the universality class of
this critical point is distinct from that of the liquid-vapor
critical point. It is straightforward �17� to calculate the criti-
cal values �tc ,Ec ,cc�. We rederive these values, primarily
with a view to presenting them in terms of the degree of
orientational order in the system. We also provide extra de-
tails that might be useful in experimentally investigating
whether the strong response of de Vries materials is indeed a
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result the proximity of the Sm-A�–Sm-C� tricritical point.
The value of the critical reduced temperature is found to be
tc= 12

5 t1st, where t1st is defined in Sec. III. Keeping in mind
the fact that the first-order transition occurs at t1st�0, one
can find the temperature difference between T1st and Tc:

Tc − T1st

T1st
�

21

80
�1�MTC − M

MTC
�2

, �18�

where the dimensionless constant �1= 4h2m2

3pas was defined ear-
lier in Sec. II and the approximation applies close to tricriti-
cality where M �MTC. The value of cc is found to be

cc =	2

5
c1st 
 �MTC − M

MTC
�1/2

, �19�

where c1st is the size of the jump in the tilt order parameter at
the zero-field transition, which is found �18� to be c1st

=	3��e�
4
e

. The above equation implies that the ratio
cc

c1st
=	2

5
should hold for any system, a prediction that should be
straightforward to test experimentally. Lastly, we find

Ec =
8

15
�e�tc�cc 
 �MTC − M

MTC
�5/2

, �20�

where �e�t� is given by Eq. �14�. Using the fact that �e�T�
=�0�T�−1, we define the following combination:

�c =
�0�Tc�Ec

cc
, �21�

where �0�Tc� is the value of the zero-field susceptibility at
T=Tc. Together, Eqs. �20� and �21� predict that �c=8 /15 for
every material that has a first-order Sm-A�–Sm-C� transition.
It would be interesting to investigate experimentally whether
this is accurate for de Vries materials with first-order
Sm-A�–Sm-C� transitions. If so, it would indicate that the
mean-field theory described here is suitable to describe the
strong electro-optic response of de Vries type materials.

C. Effects of the temperature dependence of the tricritical
proximity parameter � on the electroclinic response

near the Sm-A�–Sm-C� transition

In previous models �22� of the Sm-A–Sm-C �and
Sm-A�–Sm-C�� transitions the parameter analogous to � has
been assumed to be independent of temperature. In our
model ��T�, given by Eq. �9�, will vary with temperature via
the temperature dependence of ���T�� and to a lesser degree
M�T�. From Eq. �9� it can be seen that ��T� decreases if
M�T� and ���T�� decrease and increase, respectively. We
have argued here and elsewhere �18,19� that in de Vries ma-
terials the system is driven toward the Sm-C� phase as the
layering ����� increases with decreasing temperature. Addi-
tionally, the nonmonotonicity of M�T�, which is both pre-

(a) (b)

E (a.u.)

c
e(iv) = 0 < e(iii) < e(ii) < e(i)

E (a.u.)

c

e(iii) = 0 < e(ii) < e(i)

FIG. 6. �Color online� Response curves c�E� for systems with �e�0, i.e., systems with continuous Sm-A�–Sm-C� transitions. The curves
show the electrically induced tilt c due to the application, in the Sm-A� phase, of a field of magnitude E. The curves were obtained using Eq.
�13�. Since we are primarily interested in the evolution of the shape of the curves we do not specify units for E �i.e., we use arbitrary units,
a.u.�. �a� A set of curves for fixed 
e=0.4 and �e=0.1 �and thus, fixed �AC�0� and different values of �e
 t�0. The different values of �e

correspond to different values of reduced temperature values t�0, and thus to different values of T�TAC. �i� �e=0.0225, �ii� �e

=0.011 25, �iii� �e=0.005 625, and �iv� �e=0. The susceptibility �= dc
dE is largest at E=0, and monotonically decreases as E is increased. The

response increases as temperature, T, is lowered toward the Sm-A�–Sm-C� transition temperature, TAC, with the zero-field susceptibility �0

diverging as T approaches TAC �or equivalently, as �e approaches zero�. �b� A set of curves for fixed �e=0.011 25 �and thus fixed reduced
temperature t�0�, 
e=0.4 and different values of �e
�AC�0. The different values of �e�0 imply varying degrees of proximity of the
continuous Sm-A�–Sm-C� transition to a tricritical point. �i� �e=0.13, �ii� �e=0.05, and �iii� �e=0. The response is larger for systems with
smaller �e �and thus, smaller �AC�.
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dicted by our model and observed experimentally �2,3� in de
Vries materials, implies that M�T� decreases as the
Sm-A�–Sm-C� transition is approached from above. Thus,
each of these effects causes ��T� to decrease toward �AC as
the Sm-A�–Sm-C� transition is approached from above.

As discussed in the preceding two sections, decreasing
��T� leads to a strengthening of the electrical response of the
tilt. Thus, we speculate that the electroclinic response in de
Vries materials is further strengthened by the thermal behav-
ior of the layering and orientational order. It would be inter-
esting to extract the temperature dependence of ��T� �per-
haps through fitting the response curves at different
temperatures� to see if it does have a temperature depen-
dence and, if so, whether it decreases as the Sm-A�–Sm-C�

transition is approached from above.
There may also be an observable feature associated with

the temperature dependence of ��T� and the nonmonotonic-
ity of M�T�. It has been predicted �19� and observed �3� that
M�T� can have a maximum within the Sm-A� phase. This
would correspond to a birefringence that increases with de-
creasing temperature �after the system has entered the Sm-A�

phase from the isotropic phase� before reaching a maximum
at Tmax and then decreases as the Sm-C� phase is approached.
For systems in which this is the case, as T is lowered through
Tmax the decrease in ��T� would become more rapid once

M�T� begins to decrease. If this were so, there may be an
associated anomaly in the electroclinic response as T is low-
ered through Tmax.

V. RESPONSE OF THE BIREFRINGENCE AND LAYER
SPACING TO AN ELECTRIC FIELD APPLIED TO

THE Sm-A� PHASE

Having analyzed how the tilt order parameter, c, will re-
spond to an electric field E being applied to the Sm-A�

phase, we now investigate how the birefringence, �n, and
layer spacing, d, are simultaneously affected. We do this with
a view to providing insight into the response of birefringence
and layer spacing for de Vries materials in particular. First
we summarize the main experimental observations �1�. In de
Vries materials the response of the tilt is unusually strong,
which as discussed above, can be explained by an unusually
small orientational order which leads to a Sm-A�–Sm-C�

transition that is either continuous and close to tricriticality
or first order. The response of the birefringence �which is
proportional to the orientational order in the system� is also
unusually strong. However, the contraction, i.e., fractional
change �d, of the layer spacing d associated with the tilt is
unusually small. The combination of a large response in the
tilt and birefringence and a small contraction of the layer

(a) (b)

E (a.u.)

c

e(iii) < e(ii) = ec < e(i) = 0

FIG. 7. �Color online� Response curves c�E� for systems with �e�0, i.e., systems with first-order Sm-A�–Sm-C� transitions. The curves
show the electrically induced tilt c due to the application, in the Sm-A� phase, of a field of magnitude E. The curves were obtained using Eq.
�13�. Since we are primarily interested in the evolution of the shape of the curves we do not specify units for E �i.e., we use arbitrary units,
a.u.�. �a� A set of curves for fixed 
e=0.4 and �e=−0.1 �and thus, fixed �AC�0� and different values of �e. The values of �e are most

usefully expressed in terms of �ec� 9
20

�e
2


e
=0.001 25, which is the value of �e at the critical reduced temperature tc. Below this value the

curves become S shaped. Since �e
 t, the ratio t / tc is the same as �e /�ec and we label the curves according to the value of t in terms of tc:
�i� t=1.2tc, �ii� t= tc, �iii� t=0.65tc, and �iv� t= t1st=

5
12 tc. For t� tc the response is continuous but “superlinear,” with d2c

dE2 �0 at small E
followed by d2c

dE2 �0 at large E. At t= tc the response has divergent susceptibility �i.e., slope� and curvature at Ec and cc, indicated with a dot.
The curves are now S shaped which implies a discontinuous response. �b� A set of curves for fixed �e=0.011 25 �and thus, fixed reduced
temperature t�0�, 
e=0.4 and different values of �e
�AC	0. Different values of �e imply varying degrees of proximity of the first-order

Sm-A�–Sm-C� transition to a tricritical point. The values of �e are given in terms of �ec�−	20�e
e

9 , the value of �e below which the curves
become S shaped. �i� �e=0, �ii� �e=�ec, �iii� �e=1.3�ec. Making �e �and thus, �AC� more negative would increase the temperature window
Tc−T1st so that the discontinuous response occurs further away from the Sm-A�–Sm-C� transition.
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spacing is technologically desirable. The unusually small
contraction of the layers eliminates buckling of the layers
and the associated chevron defects which lead to unwanted
striping in ferroelectric liquid crystal displays.

Another noteworthy experimental observation is the scal-
ing of the birefringence response with tilt response. The tilt
c�E� and the birefringence �n�E� each scale nonlinearly with
applied field E, and the shape of the nonlinear curves change
significantly as temperature is varied. However, a parametric
plot of �n�E� vs c2�E� is very close to being linear. Remark-
ably, this linear scaling seems to hold regardless of the nature
�i.e., continuous, tricritical, or first order� of the transition
�9,10�. Additionally, the slope of this linear scaling varies
very little with temperature. There does not seem to be any
published parametric plots of �d�E� as a function c2�E�. As
discussed in more detail below, we predict that while �d�E�
will scale nonlinearly with applied field it will scale linearly
with c2�E�. The slope of this linear scaling is proportional to
the orientational order and will thus be unusually small in
systems with unusually small orientational order. Unlike the
birefringence we predict that the slope of the absolute change
in layer spacing �d�E� �as opposed to fractional change
�d�E�� vs c2�E� will not be weakly temperature dependent.

In what follows we first investigate the response of the
birefrigence to an applied electric field. The general methods
described here are also applied to investigating the response
of the layer spacing.

A. Response of the birefringence to an electric field applied to
the Sm-A� phase

In analyzing the response of the birefringence we use the
fact that birefringence is proportional to the orientational or-
der in the system and find the change in orientational order
due to an applied field. We define the zero-field orientational
order as ME=0. It is important to note that this differs from
M0, given after Eq. �6�, which is defined as the zero-field
orientational order in the absence of coupling between orien-
tational order and layering. As discussed in the analysis of
the nonchiral zero-field model �18�, the effect of the coupling
of the orientational order to layering order is to increase the
orientational order above its zero coupling value M0. Here,
with our chiral model, we are focusing on the additional
effect on orientational order due to the application of an elec-
tric field. Thus, we use the notation ME=0 to represent the
zero-field orientational order, which includes the increase
due to the zero-field coupling of orientational order to layer-
ing. This means that ME=0�M0. As was shown in Ref. �19�
ME=0 is a nonmonotonic function of temperature. As tem-
perature is lowered toward TAC, ME=0 decreases �albeit
weakly�, a feature which, while unusual, has nonetheless
been observed experimentally �2,3�. Upon entry to the Sm-C
phase, ME=0 increases with decreasing temperature. For con-
tinuous transitions the rate of increase is larger the closer the
transition is to tricriticality and for first-order transitions the
increase is larger the further transition is from tricriticality.

We define �ME
as the fractional change in the orienta-

tional order due to the application of an electric field, i.e.,
M =ME=0�1+�ME

�. The response �ME
is obtained by mini-

mizing the free energy with respect to �ME
. This is made

tractable by assuming that �ME
is small and expanding the

free energy to quadratic order in �ME
. Details of the analysis

are given in the Appendix. We find that within the Sm-A�

phase, for small t and �AC, i.e., close to a Sm-A�–Sm-C�

transition which is close to tricriticality, the fractional change
in orientational order is given by

�ME
=

3m

2
M
gqE=0

2 ���2
1 − O� c2�E�
cM

2 ��c2�E� , �22�

where m=1+
2hqE=0

2

g is a dimensionless constant and 
M
=d2fM /dM2 �M=M0

, where fM is given in Eq. �5�. The zero-
field layering wave vector, qE=0, is distinct from the bare q0,
in that it includes the effects of the zero-field coupling be-
tween orientational and layering orders. The dimensionless
parameter cM can be thought of as the value of c where the
scaling of �ME

with c crosses over from being quadratic to
quartic. We define cM in the Appendix and show it to be
O�1�, which makes the quartic contribution negligible in our
theory, where it is assumed that c�1. It should also be
pointed that the largest experimentally measured values of c,
obtained for large fields, are on the order of cmax�0.5 �cor-
responding to cmax=sin��max�, where �max�30°�. Thus, at all
but the largest values of c the scaling of �ME

with c is qua-
dratic, which is consistent with experiment. Most impor-
tantly, the above result, Eq. �22�, is valid for both continuous
and discontinuous c�E� response curves. Of course, the linear
scaling of �ME

with c2�E�, implied by Eq. �22�, means that if
there is a strong or discontinuous response of tilt c to applied
field E, there will be a correspondingly strong response of M,
and hence birefringence, to applied field. This is also consis-
tent with experiment.

Having shown that the change in orientational order �and
hence birefringence� scales linearly with c2�E�, we next con-
sider the slope of this scaling, in particular its temperature
dependence which, as discussed above, is experimentally ob-
served to be weak. In most published work �e.g., Refs.
�6,12�� that has analyzed the change in birefringence as a
function of tilt, it is the absolute change rather than the frac-
tional change of birefringence that is considered. In our
theory this corresponds to the absolute change in orienta-
tional order �M�E�=M −ME=0 which is given by

�M 
 ME=0�T�qE=0
2 �T����T��2c2�E� , �23�

where we have used �M =ME=0�ME
and in going from Eqs.

�22� and �23� we have kept only the leading-order tempera-
ture dependence �which we now display explicitly� of the
c2�E� prefactor. Thus, the temperature dependence of the
slope of �M�E� vs c2�E� is determined by the temperature-
dependent combination ��T�=ME=0�T�qE=0

2 �T����T��2. Since
ME=0�T�, qE=0�T� and ���T�� each remain finite within the
Sm-A� phase, both ��T� and the slope will also remain finite.
In particular there will be no dramatic change in the slope as
the Sm-A�–Sm-C� transition is approached from above.
Given that the temperature dependence of ME=0�T� is weak,
any change in the slope should be due to a change in the
combination qE=0

2 �T����T��2. We have already argued that
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���T�� increases monotonically as the Sm-A�–Sm-C� transi-
tion is approached from above. It is generally observed ex-
perimentally that as the Sm-A�–Sm-C� transition is ap-
proached from above, there is a monotonic dilation of the
layer spacing, which corresponds to a monotonic decrease in
qE=0�T�. Thus, we speculate that the temperature changes in
qE=0

2 �T� and ���T��2 offset each other which leads to only a
weak temperature dependence of the slope of the birefrin-
gence vs c2�E�.

B. Response of layer spacing to an electric field applied to the
Sm-A� phase

To analyze the change in layer spacing due to the appli-
cation of a field, we first obtain the change in the wave
vector q=2� /d. As with the orientational order we define
qE=0 to be the zero-field wave vector. This is distinct from q0,
the zero-field wave vector in the absence of coupling be-
tween orientational order and layering. Since the wave vector
only appears as q2 it is convenient to define a fractional
change �qE

in q2 due to the application of an electric field,
i.e., q2=qE=0

2 �1+�qE
�. In finding �qE

we follow the same
method as described in Sec. V A and relegate the details to
the Appendix. Within the Sm-A� phase, close to tricriticality,
i.e., for small �AC, we find

�qE
=

3�a1�
2K

ME=0
1 + O� c2�E�
cq

2 ��c2�E� , �24�

where, as in Ref. �18�, a layer contraction �as opposed to
dilation� requires a1 to be negative. As with cM, the dimen-
sionless parameter cq can be thought of as the value of c
where the scaling of �qE

with c crosses over from being
quadratic to quartic. We also define cq in the Appendix,
showing it to be O�1�, which for the same reasons as out-
lined above, allows us to neglect the quartic contribution.

Using the above equation and the relationship between
layer spacing �d� and wave vector �q=2� /d�, we next seek
the contraction in the layer spacing. This contraction is
equivalent to the fractional change in the layer spacing �d
= �dE=0−d� /dE=0, where dE=0 is the zero-field value of the
layer spacing in the Sm-A� phase. We find that the contrac-
tion is given by

�d =
3�a1�
4K

ME=0c2�E� . �25�

Since c�E� is a nonlinear function of E �and is not 
	E� the
above equation implies that the contraction �d�E� will also
be a nonlinear function of E, and if c�E� is discontinuous,
then ��E� will also be discontinuous. However, the above
equation predicts that, like the birefringence, �d�E� will scale
linearly with c2�E�, regardless of the nature of the transition.
Thus, for small tilt angle �, which implies c��, the frac-
tional change in layer spacing scales like �2. In addition, our
theory predicts that this fractional contraction is also propor-
tional to the size of the orientational order ME=0. Thus, de
Vries systems which have unusually small orientational order
will, under the application of an electric field, exhibit an
unusually small layer contraction, as shown in Fig. 3�b�.

Since ME=0�T� is, as discussed in Sec. V A, only weakly
temperature dependent, the slope of the �d�E� vs c2�E�
should also be weakly temperature dependent. However, the
slope of the absolute change in layer spacing dE=0−d
��d�E� vs c2�E� should not be weakly temperature depen-
dent. This is because �d�E�=d�T��d�E� and d�T� has been
shown experimentally to exhibit a noticeable monotonic in-
crease as the Sm-A�–Sm-C� transition is approached from
above. Thus, we expect that as temperature is lowered there
should be a noticeable increase in the slope of �d�E� vs
c2�E�.

VI. SUMMARY

In summary, we have analyzed a generalized Landau
theory for chiral smectics, one that tracks orientational, lay-
ering, tilt, and biaxial order parameters as well as layer spac-
ing. A combination of small orientational order and large
layering order leads to Sm-A�–Sm-C� transitions that are ei-
ther continuous and close to tricriticality or first order. The
model predicts that the change in layer spacing at the zero-
field transition will be proportional to the orientational order.
It also predicts that in systems having zero-field transitions
that are continuous and close to tricriticality or first order, the
increase in birefringence upon entry to the Sm-C� phase will
be especially rapid. Thus, both the small change in layer
spacing and the rapid increase in birefringence can be attrib-
uted to the system possessing a combination of small orien-
tational order and large layering order. This is consistent with
the observation that de Vries materials usually possess un-
usually small orientational order, which in turn means that
strong layering order is required for stabilization.

The model also predicts that as a result of the zero-field
Sm-A�–Sm-C� transition being either continuous and close to
tricriticality or first order, the electroclinic response of the tilt
will be unusually strong. In the case of a system that has a
zero-field first-order Sm-A�–Sm-C� transition, the electro-
clinic response tilt will exhibit a jump. Thus, as with the
zero-field features of de Vries materials, our model indicates
that the strong electrical response is a result of a combination
of small orientational order and strong layering order.

The equation governing the response of the tilt is com-
pletely analogous to that derived by Bahr and Heppke to
describe a field-induced critical point near a Sm-A�–Sm-C�

transition �17�. However, our derivation of the response
equation from a more basic generalized Landau theory al-
lows us to incorporate the effects of the layering and orien-
tational orders, which we can in turn relate to the strength
and nature of the tilt response. In addition, it also allows us
to derive the electroclinic response of the orientational order
�and thus, birefringence� and the layer spacing. We find that
the change in birefringence scales quadratically with the
electrically induced tilt. This means that an unusually strong
tilt response implies an unusually strong response of the bi-
refringence, as is the case in de Vries materials. The qua-
dratic scaling is also consistent with experiment. Similarly,
we find that the electrically induced change in layer spacing
also scales quadratically with tilt, although the scaling is also
proportional to orientational order.
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Thus, the theory predicts that a system with small orien-
tational order and strong layering order will exhibit a com-
bination of strong electro-optic response �in both reorienta-
tion of the optical axis and change in birefringence� and
small layer change. Such a combination is technologically
desirable for ferroelectric liquid crystal �FLC� based liquid
crystal devices.
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APPENDIX: FIELD-INDUCED CORRECTIONS TO THE
ORIENTATIONAL ORDER AND TO THE LAYERING

WAVE VECTOR

In this appendix we provide further details of the method
by which we find the fractional changes �ME

and �qE
to the

orientational order and to the layering wave vector, respec-
tively, due to the application of an electric field in the Sm-A�

phase. This is done near a Sm-A�–Sm-C� transition �continu-
ous or first order� that is close to tricriticality.

1. Correction to the zero-field orientational order

As discussed in Sec. V A we are interested in finding the
correction to the zero-field value of the orientational order
ME=0. This zero-field value already includes the increase due
to the zero-field coupling of orientational order to layering.
In the zero-field Sm-A� phase the tilt is zero and the zero-
field value ME=0 was found �18� by analyzing the part of the
free energy that does not include tilt, i.e., fc=0= fM + f�+ fM�.
Specifically, we Taylor expanded fc=0�M� about M0, the
value of the orientational order in the absence of coupling to
layering, i.e., the value that minimizes fM. This gave

fc=0 � fc=0�M0� + fM�� �M0��ME=0 − M0�

+
1

2!
fM� �M0��ME=0 − M0�2, �A1�

where fM�� �M�=dfM� /dM and fM� �M�=d2fM /dM2. We have
neglected the term 
fM�� �M0� which contributes terms higher
order in coupling compared to fM� �M0�. Minimization of the

above fc=0 then gave ME=0=M0−
fM�� �M0�
fM� �M0� .

When a field is applied to the Sm-A� phase, a tilt is in-
duced and the tilt-dependent part of the free energy becomes
nonzero. Thus, to find the correction to ME=0, we Taylor
expand the full free energy f = fc=0+ fc+ fEC about ME=0. Do-
ing so gives

f � fc=0�ME=0� + �fc��ME=0� + fEC� �ME=0��ME=0�ME

+
1

2!
fc=0� �ME=0�ME=0

2 �ME

2 , �A2�

where �ME
�E�= M�E�

ME=0
−1, fc��M�=dfc /dM, fEC� �M�=dfEC /dM,

and fc=0� �M�=d2fc=0 /dM2. As above, we neglect the term

fEC� �ME=0� which contributes terms higher order in cou-
pling compared to fc=0� �ME=0�. Minimization of f now gives

�ME
�E� � −

�fc��ME=0� + fEC� �ME=0��
fc=0� �ME=0�ME=0

. �A3�

Keeping only terms to lowest order in coupling coefficients,
fc=0� �ME=0�� fM� �M0��
M. The dependence of �ME

�E� on E
enters via the dependence of �fc+ fEC� on E and c�E�. Since
we seek to relate the correction �ME

�E� to c�E�, it is useful to
express �fc+ fEC� just in terms of c�E� and not E explicitly.
This can achieved using Eq. �13� for E in terms of c, giving

fc + fEC = −
1

2
rcc

2�E� −
1

4
ucc

4�E� −
1

6
vcc

6�E� . �A4�

To obtain �ME
�E�, as given in Eq. �A2�, we must differenti-

ate fc+ fEC with respect to M which enters via the coeffi-
cients rc�M ,q2�, uc�M ,q2�, and vc�M ,q2�. These coefficients
were introduced after Eq. �8�, but it is convenient to present
them again,

rc�M,q2� = 3a�q2�q2���2M��M,q2� ,

uc�M,q2� = 9��M,q2�hq4���2M2,

vc�M,q2� =
81

4
sq6���2M3, �A5�

where a�q2�, ��M ,q2�, and ��M ,q2� are given by

a�q2� = a0 + a1�q2 − q0
2� ,

��M,q2� = 1 −
b���2 + �g + 2hq2�M

a�q2�
,

��M,q2� = 1 −
g

2hq2� wM

gq2��2�
− 1�−1

. �A6�

Differentiating Eq. �A4� with respect to M, inserting the re-
sult into Eq. �A3� and keeping terms to lowest order in cou-
plings, t and �AC, i.e., close to a Sm-A�–Sm-C� transition
which is close to tricriticality, we find

�ME
�E� �

3m

2
M
gq2���2
1 − � c�E�

cM
�2

+ � c�E�
cM1

�4�c2�E� ,

�A7�

where m=1+ 2hq2

g is a dimensionless constant, and

cM = � 2g

3hq2�1/2

,

cM1 = � 4mg

27ME=0sq4�1/4

. �A8�

If g is of the same order as hq2 then cM is O�1�. This is not
unreasonable since g and h are both coupling constants,
which we take to be small and of the same order. Similarly,
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for M �MTC, which is of the same order as the coupling
constants, cM1�1. Thus, for the small c values assumed for
our theory and observed experimentally, the � c�E�

cM
�2 and

� c�E�
cM1

�4 contributions are small and the scaling of �ME
�E� with

c�E� is quadratic. Note that in going from Eqs. �A7� and �24�
we omit the c6�E� term and replace M with ME=0.

2. Correction to the zero-field wave vector

In this part of the appendix we present details of our
analysis of the fractional change, �qE

�E�= q2�E�
qE=0

2 −1, in q2. As
with the orientational order, we are seeking the correction to
the zero-field value qE=0

2 which already includes the correc-
tion due to the zero-field coupling of orientational order to
layering. The method we use to obtain �qE

�E� is completely
analogous to that used above to find �ME

�E�. Taylor expand-
ing the free energy f about qE=0

2 and minimizing with respect
to �qE

�E�, we find

�qE
�E� � −

�fc��qE=0
2 � + fEC� �qE=0

2 ��
fc=0� �qE=0

2 �qE=0
2 , �A9�

where fc��q
2�=dfc /d�q2�, fEC� �q2�=dfEC /d�q2�, and fc=0� �q2�

=d2fc=0 /d�q2�2. Keeping only terms to lowest order in cou-
pling coefficients, fc=0� �qE=0

2 �� f���q0
2�=K���2. We again use

Eq. �A4� for fc+ fEC but now we are interested in the q2

dependence of the coefficients rc�M ,q2�, uc�M ,q2�, and

vc�M ,q2�, which are given by Eqs. �A5� and �A6�. Differen-
tiating Eq. �A4� with respect to q2, inserting the result into
Eq. �A9� and keeping terms to lowest order in couplings, t
and �AC, i.e., close to a Sm-A�–Sm-C� transition which is
close to tricriticality, we find

�qE
�E� �

3�a1�
2K

M
1 + � c�E�
cq

�2

− � c�E�
cq1

�4�c2�E� ,

�A10�

where m=1+ 2hq2

g is a dimensionless constant, and

cq = � �a1�
3gqE=0

2 M
�1/2

,

cq1 = � 4�a1�
27M2sq4�1/4

. �A11�

For M �MTC, which is of the same order as the small cou-
pling constants, both cM and cM1 are �1. Thus, as with the
correction to orientational order, for the small c values as-
sumed for our theory and observed experimentally, the
� c�E�

cq
�2 and � c�E�

cq1
�4 contributions are small and scaling of

�qE
�E� with c�E� is quadratic. Note that in going from Eqs.

�A10� and �24� we omit the c6�E� term and replace q with
qE=0.
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